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Microscopic calculation of 240Pu scission with a �nite-range e�ective force
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Lawrence Livermore National Laboratory, Livermore, CA 94551

(Dated: 2nd October 2009)

Hartree-Fock-Bogoliubov calculations of hot �ssion in 240Pu have been performed with a newly-
implemented code that uses the D1S �nite-range e�ective interaction. The hot-scission line is iden-
ti�ed in the quadrupole-octupole-moment coordinate space. Fission-fragment shapes are extracted
from the calculations. A benchmark calculation for 226Th is obtained and compared to results in
the literature. In addition, technical aspects of the use of HFB calculations for �ssion studies are
examined in detail. In particular, the identi�cation of scission con�gurations, the sensitivity of near-
scission calculations to the choice of collective coordinates in the HFB iterations, and the formalism
for the adjustment of collective-variable constraints are discussed. The power of the constraint-
adjustment algorithm is illustrated with calculations near the critical scission con�gurations with
up to seven simultaneous constraints.

I. INTRODUCTION

The last three decades have seen a resurgence of in-
terest in the microscopic description of nuclear �ssion.
This renaissance in �ssion theory has been ushered in
by progress in formal many-body theory and by the ad-
vent of faster and parallel computers. The microscopic
approach can boast a well-established track record of ac-
complishment over the last three decades, such as the
prediction of �ssion barriers [1�7], and their evolution
with temperature [8] and angular momentum [9], the pre-
diction of �ssion times [2, 10] and �ssion-isomer lifetimes
[11], the description of hot and cold �ssion [2], the pre-
diction of �ssion yields [12], the description of cluster ra-
dioactivity as very asymmetric �ssion [13], and most re-
cently, the calculation of �ssion-fragment properties (e.g.,
excitation energy, shape, kinetic energy, emitted-neutron
multiplicity, angular momentum) [14, 15]. Despite these
successes however, the microscopic description of �ssion
remains one of the most di�cult challenges in nuclear
physics.
On the other hand, the promise of a microscopic the-

ory that can reliably predict nearly all aspects of �s-
sion within a single, self-consistent framework is tantaliz-
ing. A fully self-consistent, dynamical approach to �ssion
has been developed by the group at Bruyères-le-Châtel
[2, 12, 14], and is being implemented at Livermore [16].
This approach treats both static and dynamic aspects
of �ssion self-consistently and requires as its only phe-
nomenological input the e�ective interaction between the
nucleons.
A Hartree-Fock-Bogoliubov (HFB) code is the central

tool for the description of the static aspects of �ssion in
the microscopic method. The use of a �nite-range e�ec-
tive interaction, such as the D1S interaction [17], allows
for the treatment of pairing within the HFB formalism
[18] in a fully self-consistent manner, and without the
need for additional phenomenological parameters. The
HFB calculations can be constrained by a judicious choice
of collective variables to explore those nuclear shapes that
are relevant to �ssion. Such constraints have con�rmed
the richness of �ssion phenomena, for example by reveal-

ing the full range of �ssion modes from hot (fragments
formed in maximally-excited states) to cold (fragments
formed with no excitation energy) [2].

In the dynamical component of the microscopic the-
ory, a wave packet is built from HFB solutions con-
strained over all relevant nuclear shapes using the Time-
Dependent Generator-Coordinate Method (TDGCM)
[19�22]. In practical applications, the Gaussian-Overlap
Approximation (GOA) to the TDGCM can be used to
produce a collective Schrödinger equation, and therefore
a collective Hamiltonian, constructed entirely from the
single-particle degrees of freedom. The TDGCM formal-
ism describes the nucleus in its lowest-energy state, as
well as its collective excitations [23, 24], and can be ex-
tended to include intrinsic excitations as well [25] on the
way to scission. These intrinsic excitations are needed
for a microscopic description of �ssion that goes beyond
the standard adiabatic approximation usually adopted in
�ssion calculations [26]. This comprehensive program for
the microscopic description of induced �ssion has already
shown the importance of dynamical e�ects in the predic-
tion of �ssion times [2] and �ssion-fragment yields [12],
but a great deal of work remains to include all the rele-
vant physics aspects in the calculation. In particular, a
detailed and quantitative understanding of scission itself
remains to be developed even at the level of the static
calculations.

In this paper, we focus on the static aspect of the
microscopic theory with three goals in mind: 1) to in-
troduce the newly-developed HFB code FRANCHBRIE
[16], which uses a �nite-range e�ective interaction, 2) to
examine in detail some basic technical aspects of �ssion
calculations with an HFB code, and 3) to present �rst-
time results of scission properties for the hot �ssion of
240Pu. In section II we review the HFB formalism and
discuss in detail some features of the one-center deformed
harmonic-oscillator basis, formal and practical aspects
of HFB �ssion calculations with multiple constraints, as
well as the HFB convergence algorithm itself. In section
III, we benchmark our HFB code against two-center cal-
culations of scission properties for 226Th by Dubray et

al. [14]. We then apply the code to the identi�cation
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of hot-scission con�gurations in 240Pu, and the shapes of
the nascent fragments just before scission.

II. THEORY

A. General HFB formalism

For convenience, we recall the main points of the HFB
formalism with a �nite-range e�ective interaction in this
section and refer the reader to the literature for further
details (see, e.g., [27�29]). We have implemented this
formalism within the code FRANCHBRIE [16].
We start from the many-body Hamiltonian in second-

quantized notation (see, e.g., chapter 5 in [27]),

H =
∑
mn

tmna†man +
1
4

∑
mnpq

V̄mnpqa
†
ma†naqap

with the antisymmetrized two-body matrix elements

V̄mnpq ≡ 〈mn |V| pq〉 − 〈mn |V| qp〉

and the usual anticommutation rules for particle opera-
tors

{am, an} =
{
a†m, a†n

}
= 0,

{
a†m, an

}
= δmn (1)

In this paper, we use a �nite-range e�ective interaction
which in coordinate space takes the form [28]

V (~r1, ~r2)

=
2∑

i=1

(
Wi + BiP̂σ −HiP̂τ −MiP̂σP̂τ

)
e−(~r1−~r2)

2/µ2
i

+iWLS
←−
∇12 × δ (~r1 − ~r2)

−→
∇12 · (~σ1 + ~σ2)

+t0

(
1 + x0P̂σ

)
δ (~r1 − ~r2) ργ

(
~r1 + ~r2

2

)
+ VCoul(2)

where
←−
∇12 ≡

←−
∇1 −

←−
∇2 ,

−→
∇12 ≡

−→
∇1 −

−→
∇2, P̂σ is the

spin-exchange operator, and P̂τ is the isospin-exchange
operator. The Coulomb interaction VCoul is added if both
particles are protons, and ρ (~r) denotes the total nuclear
density. The D1S e�ective interaction [2, 4] has been used
for the present calculations. Given the computationally-
intensive nature of the calculations, we have omitted con-
tributions from the spin-orbit and Coulomb interactions
to the pairing �eld. This approximation is well justi�ed
in the case of the spin-orbit interaction whose intensity
in the singlet-even channel is very weak, but less so for
the Coulomb term that can signi�cantly reduce the pair-
ing correlations for proton pairs [30]. We note also that
the density-dependent part of the interaction is adjusted
to cancel in the singlet-even channel by setting x0 = 1.
Consequently, only the Gaussian terms contribute to the
pairing �eld, which permits the fully self-consistent ap-
plication of the Bogoliubov formalism, without the need
for arbitrary truncations of the space or the use of ad-hoc

pairing forces. The Coulomb exchange contribution has
been treated in the Slater approximation, and the two-
body contribution to the center-of-mass correction has
been included in the mean �eld.
The Bogoliubov theory [18] takes into account, in

an approximate way, two-body correlations beyond the
mean-�eld restriction to particle-hole excitations. The
approach de�nes quasiparticle creation and destruction
operators as linear combinations of the particle creation
and destruction operators,

η†µ ≡
∑

n

(
Unµa†n + Vnµan

)
ηµ ≡

∑
n

(
U∗

nµan + V ∗
nµa†n

)
(3)

Assuming there exists a vacuum of the destruction op-
erators ηµ, denoted by

∣∣0̃〉
, we identify it as the ground

state of the nucleus and its energy can be written sim-
ply as a functional of the density matrix and the pairing
tensor or, equivalently, as a functional of the generalized
density

R ≡
(

ρ −κ
κ∗ I − ρ∗

)
≡

(
R11 R12

R21 R22

)
(4)

We recall that the unitarity condition of the transforma-
tion in Eq. (3) is equivalent to

R2 = R (5)

we will therefore write the energy as

E (ρ, κ, λp, λn,Λ)

= E (ρ, κ)− λp

〈
0̃

∣∣∣N̂p

∣∣∣ 0̃
〉
− λn

〈
0̃

∣∣∣N̂n

∣∣∣ 0̃
〉

−Tr
[
Λ

(
R2 −R

)]
(6)

where E (ρ, κ) is the expectation value of the Hamilto-
nian in the quasiparticle ground state, λp and λn are
the Lagrange parameters needed to impose the appro-
priate average number of protons and neutrons, respec-
tively, given by the matrix R. The matrix Λ of Lagrange
parameters is needed to satisfy Eq. (5). Thus the de-
termination of the fundamental nuclear state amounts to
�nding the generalized density matrix that minimizes Eq.
(6). Some authors recognize Eq. (6) as the equation of a
multidimensional surface, and seek its minimum directly
using standard mathematical techniques to �nd the min-
imum of a function. Among these approaches, we cite
the gradient method [31] or an improved variant known
as the conjugate gradient method [32]. The number and
diversity of applications using this method speak to its
e�ectiveness [7�9, 13, 33, 34]. In our approach to the
minimization of Eq. (6), we start with the variational
principle,

δE (ρ, κ, λp, λn,Λ) = Tr {[H− (ΛR + RΛ− Λ)] δR}
= 0 (7)
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∀δR where

Hij
mn ≡ 2

δE (ρ, κ, λp, λn)
δRji

nm

(8)

Taking into account Eq. (5) it is possible to eliminate the
constraint matrix Λ, leading to the Bogoliubov equation

[H (R) , R] = 0 (9)

The Bogoliubov matrix H in Eq. (9) is constructed with
the help of the block matrices de�ned by Eq. (8). The ex-
plicit form of these matrix elements for the D1S e�ective
interaction is given by references [28, 35]. The solution
of Eq. (9) is then found by successive diagonalizations
of the Bogoliubov Hamiltonian. This iterative solution
method is described in greater detail in section IID and
appendix A.

B. Basis truncation and aspects of one-center basis
calculations

In practical applications, the formalism of section IIA
must be expressed in some basis. Typically, the deformed
Harmonic-oscillator (HO) basis (see, e.g., chapter 2 in
[27]) has been used in many HFB calculations, including
those dealing with �ssion [4, 36]. The basis states in
cylindrical coordinates (ρ, z, ϕ) are

〈~r|nr,Λ, nz, σ〉 = Φnr,|Λ| (ρ; b⊥)
eiΛϕ

√
2π

×Φnz (z; bz)χσ (10)

where the explicit forms used in this work for the ra-
dial (Φnr,|Λ|) and Cartesian (Φnz

) components and their
relevant properties can be found, e.g., in [35], and χσ

is a spinor function for σ = ±1/2. These basis states
assume axial symmetry of the nucleus explicitly. Other
symmetries can also be imposed on the HFB calculation
to reduce the overall size of the problem. Two symme-
tries in particular are relevant to the �ssion calculations
in this paper: the symmetry with respect to the parity
operator Π̂

Π̂ |nr,Λ, nz, σ〉 = (−1)|Λ|+nz |nr,Λ, nz, σ〉

and the symmetry with respect to the z-signature opera-
tor Ŝz = iR̂z (π), where R̂z (π) e�ects a rotation by π in
both spatial and spin space,

Ŝz |nr,Λ, nz, σ〉 = σ(−1)|Λ| |nr,Λ, nz, σ〉

Throughout this work, only the z-signature symmetry
has been imposed, leaving the �ssioning nucleus free to
violate the symmetry with respect to parity and assume
asymmetric shapes. These symmetries are taken into
account explicitly by rewriting the general Bogoliubov

transformation of Eq. (3) in terms of the relevant quan-
tum numbers as

η†µ (q, sz,Ω) ≡
∑

n

[
Uq,sz,Ω

nµ a†n (q, sz,Ω)

+V q,sz,Ω
nµ an

(
q, sz, Ω̄

)]
ηµ

(
q, sz, Ω̄

)
≡

∑
n

[(
Uq,sz,Ω̄

nµ

)∗
an

(
q, sz, Ω̄

)
+

(
V q,sz,Ω̄

nµ

)∗
a†n (q, sz,Ω)

]
where q distinguishes protons and neutrons, sz = ±1
is the z-signature quantum number, and Ω̄ is the to-
tal angular-momentum projection for the time-reversed
state.
Even with the z-signature symmetry imposed, the

treatment of �ssion can require large basis sizes and the
calculation of a large number of two-body matrix ele-
ments. In order to further limit the size of problem, var-
ious basis truncation schemes have been devised. Some
[37] keep only those basis states with corresponding HO
energies below a given cuto�, while other schemes [4, 38]
directly allow for more quanta along the z direction�the
direction of elongation of the �ssioning nucleus�compared
to the radial direction. In the truncation scheme of [37],
the HO quantum numbers must satisfy

~ω⊥ (n⊥ + 1) + ~ωz

(
nz +

1
2

)
≤ ~ω0 (N + 2) (11)

with n⊥ ≡ 2nr + |Λ| and for a given maximum shell
number N , where the oscillator frequencies are related
to the length parameters b⊥ and bz in Eq. (10) by

ω⊥ =
~

mb2
⊥

, ωz =
~

mb2
z

, ω3
0 = ω2

⊥ωz (12)

and m is the nucleon mass. With increasing axial elon-
gation and for �xed N , Eq. (11) adds more shells in the
z direction while simultaneously decreasing the number
of shells in the radial direction, thus keeping the basis
size from growing too quickly with deformation. In the
truncation scheme of [4, 38], the condition

nz

q
+ 2nr + |Λ| ≤ N (13)

is imposed for a given maximum shell number N and
parameter q. In this work we have used both truncation
schemes. The truncation given by Eq. (11) has been used
for most calculations in this paper, while the truncation
of Eq. (13) has been used mainly in section IIIA.
The oscillator lengths b⊥ and bz in Eq. (10), or equiv-

alently the frequencies ω⊥ and ωz, are variational pa-
rameters in the HFB calculation that must be chosen to
minimize the HFB energy. Through a series of calcula-
tions in 240Pu using the truncation scheme of Eq. (13)
with N = 13 and q = 1.5, and exploring a wide range of
values of the constraints on the quadrupole (Q20) and oc-
tupole (Q30) moments, an approximate dependence was
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obtained for the frequencies that minimize the HFB en-
ergy, given by

~ω0 = 8.4345− 0.0021668Q20 (14)
ω⊥
ωz

= 1.7041 + 0.0028743Q20 (15)

with Q20 in barns and ~ω0 in MeV. No signi�cant depen-
dence on Q30 was observed in the range of interest.
Perhaps the most important aspect of the basis states

in Eq. (10) is that they are centered about the origin
by construction. In particular, the Gaussian factor in
Eq. (10) ensures that the nuclear wave function falls o�
rapidly with increasing z. Despite this feature of the ba-
sis states, we will show that it is still possible to describe
the exotic shapes occurring in �ssion. In order to de-
scribe both the neck (near z = 0) and nascent fragments
(typically 5-10 fm from the origin) with the basis states
of Eq. (10), we are forced to include many quanta in the
z direction, and to use relatively large values of bz.
To justify the use of the one-center basis for the range

of �ssioning con�gurations and quantities examined in
this paper, we have performed separate HFB calcula-
tions for 134Te and 106Mo centered at the origin, and
translated the resulting wave functions to the typical po-
sitions these nuclei occupy as 240Pu nascent �ssion frag-
ments. The formalism required for translating a wave
function expressed within a �nite HO basis is given in ap-
pendix B. The basis was truncated according to Eq. (11)
with N = 13, resulting in a maximum number nz = 26
along the z axis. The result is shown in Fig. 1, and
compared to a translation in an in�nite-sized basis (ob-
tained in practice by redrawing the curves at the dis-
placed centroid positions while preserving their shape).
The comparison clearly shows the appearance of spuri-
ous tails for each fragment translated within a �nite-size
basis. If the fragments are separated further, e.g. by an
additional 2.5 fm for each fragment in Fig. 2, the tails
grow larger. However, the tails caused by the translation
in a �nite basis remain relatively small (∼ 10−4 fm−1 in
Fig. 1, and ∼ 5 × 10−4 fm−1 in Fig. 2), and the sepa-
rations between the fragments in both �gures are larger
than those encountered in the remainder of this work.
In section IIIA we will show that these tails do not sig-
ni�cantly a�ect the nuclear properties calculated in this
paper. In a forthcoming publication [39] we will explore
a more microscopic de�nition of scission and of the �s-
sion fragments, and we will calculate quantities such as
the interaction energy between the fragments that may
be more sensitively a�ected by the presence of these tails
[43].

C. Multiple constraints in HFB calculations

In this section, we focus on formal and practical consid-
erations in the choice and control of multiple constraints
in HFB calculations. We will describe a mechanism for
the adjustment of the constraints which generalizes the
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Figure 1: (Color online) Plots of the nuclear densities for
fragments of 134Te and 106Mo along the axis of elongation
of the nucleus, calculated in the one-center basis and plotted
(as solid black lines) centered at z = -7.63 and 9.65 fm, re-
spectively. The dashed red lines represent the same densities,
but translated from the origin to their respective centroid
positions within a �nite harmonic-oscillator-basis truncated
according to Eq. (11) and with N=13 shells, using the for-
malism in appendix B.
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Figure 2: (Color online) Same as Fig. 1, but for the 134Te
and 106Mo fragments translated an additional 2.5 fm each, to
centroids at z = -10.13 and 12.15 fm, respectively.

discussion in [28]. The formalism described here and
used in our calculations is that of variation with lin-
ear constraints. Other approaches for the adjustment of
constraints, such as the quadratic-constraint method can
also be found in the literature [40]. We have adopted the
linear-variation approach in our work because we have
found it to be stable and robust, and these are important
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qualities needed to map out the scission con�gurations,
which requires precise control of the nuclear shape. For a
process like �ssion, these constraints are central not only
to being able to drive the nucleus to scission, but also to
uncover the full richness of the microscopic method in its
ability to describe the complexities of �ssion. In section
IIA we already discussed the introduction of constraints
on the average number of neutrons and protons for the
HFB Hamiltonian. Further constraints can be introduced
through the external-�eld one-body operators λiF̂i,

H −
∑

i

λiF̂i (16)

where the parameters λi are used to adjust the �eld in-
tensities. Based on Eq. (9), the Bogoliubov equation
associated with Eq. (16) can now be written[

H (R)−
∑

i

λiFi, R

]
= 0

where

Fi ≡
(

F̂i 0
0 −F̂ ∗

i

)
(17)

in the particle-hole representation, and H (R) is given by
Eq. (8). In what follows, we will use the notation

H (R, {λi}) ≡ H (R)−
∑

i

λiFi

where {λi} represents the set of Lagrange multipliers
other than those associated with the proton and neutron
numbers. The λi Lagrange multipliers can be adjusted
to yield an HFB solution with desired expectation values
fi of the �elds 〈

F̂i

〉
=

1
2
TrF̂i +

1
2
TrFiR

= fi

The formalism used to �nd the appropriate λi parameters
is derived in appendix A. In describing �ssion within the
microscopic approach, we are free to impose any number
of constraints, each de�ned by a corresponding external-
�eld operator. We are limited in this task by the compu-
tational requirements, which grow quickly with the num-
ber of constraints, and by their relevance to the �ssion
process.
In the simplest physical picture of �ssion, we expect

that the nucleus will stretch along its symmetry axis un-
til scission, and therefore introduce the mass quadrupole
operator Q̂20 as a constraint. Next, the octupole oper-
ator Q̂30 is introduced to account for the range of mass
divisions observed in fragments, from symmetric to asym-
metric. With the introduction of the octupole constraint,
we are forced to impose a constraint on the dipole mo-
ment, Q̂10, as well in order to maintain the center of

80 100 120 140 160 180 200
Q40 (b

2)

-1820

-1810

-1800

-1790

-1780

E
hf

b (M
eV

)

Q20 = 300 b
Q20 = 370 b

Figure 3: Calculated HFB energy for 240Pu as a function of
hexadecapole moment, and for quadrupole moments of 300 b
(cold �ssion) and 370 b (hot �ssion). For the 〈Q20〉 = 300b

case, the �ssion valley is seen near
〈
Q̂40

〉
= 130b2, and the

fusion valley is near
〈
Q̂40

〉
= 90b2. For the 〈Q20〉 = 370 b

case, only the fusion valley is observed, near
〈
Q̂40

〉
= 140b2.

mass of the nucleus �xed. The hexadecapole operator
Q̂40 controls the formation of the neck between nascent
fragments, and accounts for the range of �ssion modes
from cold to hot [2]. In addition, we recall that the HFB
procedure requires constraints on the expected values of
the proton-number (N̂p) and neutron-number (N̂n) op-
erators.

In Fig. 3, we show a calculation of the HFB energy

for 240Pu as a function of Q40 (Q40 ≡
〈
Q̂40

〉
) at two

quadrupole deformations, 300 b and 370 b, which cor-
respond to the so-called cold and hot �ssion limits, re-
spectively [2]. These calculations were performed with 5

constraints (for the values of
〈
N̂p

〉
= 94,

〈
N̂n

〉
= 146,〈

Q̂10

〉
= 0,

〈
Q̂20

〉
= 300 b or 370b , and 80b2 ≤〈

Q̂40

〉
≤ 200 b2). In the cold-�ssion case, a barrier of

height ∼ 4.0MeV relative to the �ssion-valley minimum
separates the two valleys. Near the hot-�ssion limit, the
�ssion valley has disappeared and the nucleus sponta-

neously falls into the fusion valley near
〈
Q̂40

〉
= 140 b2.

Between the hot and cold extremes, the nucleus can un-
dergo �ssion through a range of intermediate modes.

The energy curves plotted in Fig. 3 e�ectively rep-

resent slices at �xed values of
〈
Q̂40

〉
in Fig. 3 of [2].

The most striking feature in Fig. 3 is the sudden vari-

ation in energy over a very small step size in
〈
Q̂40

〉
of

1 b2. In the cold-�ssion case, a drop of 2.7 MeV is ob-

served in going from
〈
Q̂40

〉
= 110b2 to 109 b2, and in

the hot-�ssion case a more pronounced drop of 7.6 MeV
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Figure 4: (Color online) Calculated nuclear densities in steps

of ∆
〈
Q̂40

〉
= 1b2 around the scission con�guration for cold

(top panel) and hot (bottom panel) �ssion. The legends give

the values of
〈
Q̂40

〉
for the di�erent curves.

occurs in going from
〈
Q̂40

〉
= 190b2 to 189b2. These

abrupt changes in energy, which are in contrast to the
smooth behavior displayed in [2], correspond to a sud-
den reduction in the neck size (Fig. 4), which we take as
an indicator of a transitional phase where the nucleus is
undergoing scission. Note that the identi�cation of such
transitional phases requires extremely small variations of
the constraints, which could explain why they were not
seen in [2]. The precise control of the constraints needed
to study the region around scission is one of the impor-
tant points that emerges from the work presented in this
paper, and the motivation for going into some detail in
the description of the constraint-adjustment algorithm in
the next section and in appendix A.

The rapid change of the neck size mentioned above sug-
gests the introduction of a constraint proportional to the

average number of particles
〈
Q̂N

〉
in the neck separating

the nascent fragments, where [4]

Q̂N ≡ exp

[
− (z − zN )2

a2
N

]
(18)

with aN = 1 fm, and zN is the position of the neck (de-
�ned as the point between the fragments where the mat-
ter density is lowest). As shown in Fig. 5, the energy

calculated as a function of
〈
Q̂N

〉
becomes smoother and

continuous. A more detailed discussion of this result is
given in the latter part of section IID.

0 0.5 1 1.5 2 2.5
QN

-1813

-1812

-1811

-1810

-1809

-1808

-1807

E
hf

b (M
eV

)

Figure 5: Variation of the HFB energy as a function of the
number of particles in the neck, de�ned by Eq. (18), at the

scission con�guration (
〈
Q̂40

〉
= 189 b2) for the hot-�ssion

calculation (
〈
Q̂20

〉
= 370b) in Fig. 3.

D. The HFB convergence algorithm

The control of HFB calculations with multiple con-
straints is a delicate procedure, made di�cult by the
number of constraints and their inherent correlations.
Because the topic continues to be of current interest in
problems that rely on constrained-HFB methods even be-
yond �ssion [32, 41], the convergence algorithm used in
the present HFB calculations is discussed in detail here.
The algorithm must balance, at each iteration, the di-
agonalization of the HFB Hamiltonian to ensure self-
consistency, and adjustment of the Lagrange multipliers
in Eq. (16). The main steps of the algorithm are as
follows

1. Read initial generalized density R and Lagrange
multipliers λi

2. Construct constrained HFB Hamiltonian
H (R, {λi})

3. Diagonalize H (R, {λi})

4. Construct new R

5. Mix R between consecutive iterations using a mix-
ing parameter α (see Eq. (20))

6. Adjust value of α based on convergence criterion

7. Calculate δλi needed to yield desired constraint val-
ues, adjust λi

8. Calculate δR corresponding to the δλi, adjust R

9. If HFB solution is not converged, return to step 2
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The �rst 4 steps in this algorithm are fairly self-
explanatory and make use of the formalism derived in
section IIA. We will examine the remaining steps in
greater detail since they are not typically discussed in
depth in the literature.
At the end of each iteration i, the convergence of the

HFB solution is assessed by calculating the largest vari-
ation from the previous iteration in the elements of the
generalized density matrix,

εi ≡ sup |Rpq
mn (i)−Rpq

mn (i− 1)| (19)

The quantity εi is also used to determine the coe�cient
α in step 5 which mixes the generalized densities between
successive iterations using an adjustable coe�cient α,

Rpq
mn (i) → (1− α)Rpq

mn (i) + αRpq
mn (i− 1) (20)

with 0 ≤ α ≤ 1. This mixing is essential to slow down
the convergence algorithm which would otherwise often
behave erratically in the �rst few iterations and could fail
to converge at all. The mixing coe�cient α is adjusted in
step 6 in such a way that it tends to zero as εi decreases.
In practice, two thresholds are supplied, εmin and εmax,
along with a maximum value αmax for the mixing coe�-
cient such that

α =


αmax εi ≥ εmax

αmax
εi−εmin

εmax−εmin
εmin < εi < εmax

0 εi ≤ εmin

Furthermore, if the HFB solution diverges from one it-
eration to the next (i.e., if εi > εi−1) then α is set to
αmax and remains at that value until the HFB solution
converges again. For the work in this paper we have used
εmin = 10−3 or 10−4, εmax = 10−1, and αmax = 0.5 (or
in a few cases 0.8 for a slower initial convergence). We
note in passing that the mixing of generalized density
matrices is a global operation, i.e. the same coe�cient α
is used for all the matrix elements. The Broyden method,
or its more elaborate modi�ed version [41], could provide
a better alternative for optimizing the choice of the mix-
ing coe�cient by associating an independent value of α
to each matrix element.
The formalism needed to adjust the Lagrange param-

eters in step 7, and the generalized density in step 8 is
presented in appendix A, and we stress the importance
of adjusting both for a stable convergence of the HFB
method. The algorithm is considered to have converged
in step 9 if εi ≤ εmin for several iterations (typically 2 in
the present work).
In order to illustrate various aspects of the convergence

algorithm, we have examined the cold-�ssion point at〈
Q̂40

〉
= 110b2 in Fig. 3 in detail. Because this point

corresponds to a local maximum in the HFB energy, its
calculation is particularly demanding on the convergence
algorithm. In Fig. 6 we show the convergence criterion,
ε, calculated using Eq. (19) at each iteration. The HFB

1 10 100
Iteration number

10-4

10-3

10-2

10-1

ε

Figure 6: Plot of the convergence metric, given by Eq. (19),

as a function of HFB iteration number for the
〈
Q̂40

〉
= 110b2

cold-�ssion point in Fig. 3.

solution is found to better than ε < 10−4 after 156 iter-
ations in this case. We note a region in Fig. 6 roughly
between iterations 10 and 40, where ε appears to be rel-
atively constant and the convergence is correspondingly
slow. In this region, all the constraints appear to be close
to their desired values, except for the dipole moment.

The
〈
Q̂10

〉
value is still relatively large (∼ 0.06−0.2 fm)

and may be responsible for the stagnant convergence.
In Fig. 7 we examine the adjustment of the �ve con-

straints at each iteration. The �gure shows the relative
deviation of each constraint from the desired value. For
all but the dipole-moment constraint, this relative devia-

tion of the calculated average value
〈
Q̂

〉
of the constraint

from its desired value q is given by∣∣∣∣∣∣
〈
Q̂

〉
− q

q

∣∣∣∣∣∣ (21)

In the case of the dipole moment, the desired value is
q10 = 0 and Eq. (21) cannot be used. Instead, we obtain

from
〈
Q̂10

〉
the position of the centroid of the nucleus,

given by
〈
Q̂10

〉
/A where A = 240 is the total number

of nucleons, and compare it to the calculated root-mean-
squared radius of the nucleus, Rrms, using the ratio∣∣∣∣∣∣

〈
Q̂10

〉
ARrms

∣∣∣∣∣∣ (22)

The calculation is started from an HFB solution that
di�ers only in the value of the hexadecapole constraint,〈
Q̂40

〉
= 115 b2, with all other constraints the same.
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Figure 7: (Color online) Relative deviations of the calcu-
lated constraint values from their desired values as a function
of HFB iteration number for the calculation with

〈
Q̂40

〉
=

110b2. The relative deviation for the dipole moment is given
by Eq. (22), and by Eq. (21) for all other constraints. The

constraints shown are:
〈
Q̂10

〉
(black solid line),

〈
Q̂20

〉
(red

dotted line),
〈
Q̂40

〉
(green dashed line),

〈
N̂n

〉
(blue dot-

dashed line), and
〈
N̂p

〉
(turquoise dot-dot-dashed line).

Hence we see in Fig. 7 that at the �rst iteration, all
relative deviations except the one for the hexadecapole-
moment constraint are small. The calculation converges
to the desired level of accuracy after 156 iterations.
This di�cult convergence should be contrasted with

the calculation of the cold-�ssion point at
〈
Q̂40

〉
=

130b2, near the bottom of the �ssion valley in Fig. 3.
The relative deviations of the constraints for this more
stable calculation are shown in Fig. 8. After the tenth
iteration, all constraints tend to the desired value rapidly
and smoothly. This calculation is converged to the same

level of accuracy as the one at
〈
Q̂40

〉
= 110 b2 after only

33 iterations.
Finally, we discuss in greater detail the discontinuities

observed in Fig. 3. Such discontinuities have been al-
luded to in the literature [42] as a potential di�culty for
microscopic calculations. In this section, we show how
these discontinuities are an indicator of a change in the
meaning of certain collective coordinates near the critical
scission con�gurations. We also show how these discon-
tinuities can be eliminated through the choice of a more
appropriate collective coordinate.
The impact of these discontinuities can be felt even

before the scission con�guration is reached. We illus-
trate this point by showing the results of HFB calcula-
tions, performed with identical multipole constraints up

to the hexadecapole moment (i.e., with the same
〈
Q̂10

〉
,
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Figure 8: (Color online) Same as Fig. 7, but for the calcula-

tion with
〈
Q̂40

〉
= 130b2.

〈
Q̂20

〉
,
〈
Q̂30

〉
,
〈
Q̂40

〉
values), but di�erent initial den-

sities. We will approach the cold-�ssion scission con-

�guration near
〈
Q̂40

〉
= 110 b2 in Fig. 3 with an ini-

tial density corresponding to either a scissioned or non-
scissioned nucleus. The �rst calculation, shown in Fig.

9, was performed at
〈
Q̂40

〉
= 130 b2, near the bottom of

the �ssion valley. Two curves are shown, corresponding
to a initial choice of the generalized density calculated

at
〈
Q̂40

〉
= 135b2 (whole nucleus), and

〈
Q̂40

〉
= 90b2

(broken/scissioned nucleus). As expected, both choices
of starting point lead to exactly the same HFB solu-
tion, as is evidenced by the overlapping density curves
in Fig. 9. By contrast, Fig. 10 compares calculations

at
〈
Q̂40

〉
= 115 b2 (i.e., near scission), starting from so-

lutions at
〈
Q̂40

〉
= 120 b2 (whole) and

〈
Q̂40

〉
= 90 b2

(broken). Both solutions have the same values of the
�rst four moments, yet the calculation started from a
whole solution leads to a whole result, while the broken
starting con�guration leads to a broken-nucleus solution.
A similar e�ect is observed in Fig. 11, corresponding to

a calculation very close to scission at
〈
Q̂40

〉
= 110b2

with starting densities from
〈
Q̂40

〉
= 115b2 (whole) and〈

Q̂40

〉
= 90 b2 (broken) solution. Note that these HFB

calculations are performed with an unprecedented 7 si-
multaneous constraints.

The densities plotted in Figs. 9-11 reveal a complex
relationship between the hexadecapole and QN degrees
of freedom. These two coordinates are not related by a
one-to-one mapping and cannot be used interchangeably
to drive the system to scission. In Fig. 12 we show the
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HFB energy surface as a function of Q40 and QN for the
calculation with all moments up to hexadecapole �xed.

In particular,
〈
Q̂20

〉
= 300b, and

〈
Q̂30

〉
= 34.951b3/2�

the value of the octupole moment for the two calculations
in Fig. 11. The shape of the energy surface suggests that
energy-minimizing HFB solutions can exist which have

the same value of
〈
Q̂40

〉
, but distinct values of

〈
Q̂N

〉
.

For most�but not all�values of
〈
Q̂40

〉
a small barrier in

the surface (marked by a solid line along the surface in
the �gure) separates the minima with di�ering values of〈
Q̂N

〉
. This barrier is at best a few hundred keV's high

and decreases rapidly with decreasing
〈
Q̂40

〉
as we ap-

proach the scission con�guration. At
〈
Q̂40

〉
= 110 b2 the

barrier has dropped to only 1.8 keV and vanishes com-

pletely between
〈
Q̂40

〉
= 104b2 and 110b2. This break

in the barrier causes the discontinuity in Fig. 3, where
the calculations are performed without a constraint on〈
Q̂N

〉
to prevent the HFB calculation from falling into

the scissioned con�guration.

Near scission, the total multipole moments of the nu-
cleus are determined by the intrinsic and relative mo-
ments of the fragments, and rearrangements between
these terms can produce di�erent matter distributions
with the same overall moments, at least up to the hex-

adecapole. Thus imposing a constraint on
〈
Q̂40

〉
will

not necessarily result in a constraint on the neck size

near scission. The
〈
Q̂N

〉
constraint on the other hand

was already shown to produce a smooth energy depen-
dence in Fig. 5 and is therefore the suitable coordinate
in the study of �ssion for con�gurations near and beyond
scission.

E. Scission in the constrained-HFB approach

In this section, we brie�y discuss various signatures
of scission. Some of the characteristics of scission have
already been mentioned in sections II C and IID. The
standard indicators of scission are sudden changes in ei-
ther energy (interaction energy between fragments or to-
tal HFB energy) or shape (neck size or hexadecapole mo-
ment) for the nucleus [14]. For the work in this paper,
we use the same semiclassical de�nition of the nascent
�ssion fragments as in [14], where a position along the
symmetry axis of the nucleus is identi�ed as a divider
between left and right fragments, and the fragment prop-
erties are obtained as integrals over the density with this
cut as an endpoint for the integrals. In a forthcoming
publication [39], we will adopt a more microscopic crite-
rion to identify the fragment [43], based on the individual
single-particle wave functions, and using the changes in
the interaction energy between fragments as an indica-
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Figure 9: (Color online) Comparison of nuclear densities for

the
〈
Q̂40

〉
= 130b2 cold-�ssion point in Fig. 3, starting either

from a whole (solid black line) or scissioned/broken (dashed
red line) initial con�guration of the nuclear density in the
HFB iterations. All moments up to the hexadecapole have
been constrained to the same values for the two calculations.
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Figure 10: (Color online) Same as Fig. 9, but for a calculation

at
〈
Q̂40

〉
= 115b2.

tor of scission. In this paper we will focus instead on
the HFB energy and the number of particles in the neck
before and after scission.

Consider, for example, the cold-�ssion calculation in

Fig. 3. At
〈
Q̂40

〉
= 110 b2 there is still a signi�cant

amount of matter in the neck connecting the nascent frag-

ment with
〈
Q̂N

〉
= 2.41. At

〈
Q̂40

〉
= 109 b2 however,

the neck breaks and
〈
Q̂N

〉
drops to 0.50 particles. This
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Figure 11: (Color online) Same as Fig. 9, but for a calculation

at
〈
Q̂40

〉
= 110b2.
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Figure 12: Energy surface calculated with constraints on〈
N̂n

〉
= 146,

〈
N̂p

〉
= 94,

〈
Q̂10

〉
= 0,

〈
Q̂20

〉
= 300 b,〈

Q̂30

〉
= 34.951b3/2, 90b3/2 ≤

〈
Q̂40

〉
≤ 130b3/2, and

0.05 ≤
〈
Q̂N

〉
≤ 3.05. The dark lines along the surface mark

the position of a small local barrier on the surface.

sudden variation in shape over a small increment in hex-
adecapole moment is shown in the top panel of Fig. 4.

At
〈
Q̂40

〉
= 90 b2, the bottom of the fusion valley,

〈
Q̂N

〉
has been reduced to 0.09 particles. From

〈
Q̂40

〉
= 110 b2

to 109 b2, the total HFB energy drops by 2.7 MeV, and

the di�erence in energy between
〈
Q̂40

〉
= 110b2 and

90b2 is 10.2 MeV.

A similar analysis can be performed for the hot-�ssion
calculation in Fig. 3. In this case, the last point where

a sizable neck still exists between the nascent fragment

is at
〈
Q̂40

〉
= 190b2, with

〈
Q̂N

〉
= 2.92 particles. By〈

Q̂40

〉
= 189 b2 the neck has essentially disappeared, and〈

Q̂N

〉
has dropped to 0.23 particles. At the bottom of

the fusion valley, where
〈
Q̂40

〉
= 140b2, there are only〈

Q̂N

〉
= 0.02 particles in the neck. The change in shape

is plotted in the bottom panel of Fig. 4. The drops in
energy are more signi�cant than in the cold-�ssion case.

From
〈
Q̂40

〉
= 190 b2 to 189b2, the total HFB energy

drops by 7.6 MeV, and from
〈
Q̂40

〉
= 190b2 to 140b2,

it drops by 20.1 MeV.

III. RESULTS

A. Benchmark: 226Th scission

We have performed HFB calculations of hot-�ssion
properties for 226Th, in order to compare with the results
in [14] that were obtained with two-center HFB calcula-
tions. We have used both the basis truncation of Eq.
(13) with N = 13 and q = 1.5, and the one given by Eq.
(11) with N = 13. The oscillator-frequency parametriza-
tion of Eqs. (14) and (15) was used, even though it was
obtained for calculations in 240Pu. We will show that our
results are in good agreement with those of Dubray et al.
[14] for 226Th with either basis truncation scheme.
In Fig. 13, we plot the hot-scission line for 226Th, and

compare it to the one obtained in [14]. The scission line
was determined by performing series of calculations at

�xed
〈
Q̂30

〉
and increasing values of

〈
Q̂20

〉
by 5 b, each

calculation using the previous one as a starting point,
until an HFB solution was found where the neck size de-

creased drastically. Lines separated by ∆
〈
Q̂20

〉
= 5 b

connecting the HFB solutions just before and just after
the breaking of the neck are displayed in Fig. 13, brack-
eting the actual scission line. These lines are in good
agreement with the 226Th scission line in [14]. In Fig.

14 we examine the region with
〈
Q̂30

〉
= 25 − 35 b3/2

in greater detail. A series of HFB calculations were per-

formed at constant
〈
Q̂20

〉
values of 280, 310, 360, and

400 b starting from
〈
Q̂30

〉
= 25 b3/2 in each case and

proceeding in steps of ∆
〈
Q̂30

〉
= 1 b3/2. For these cal-

culations, the basis truncation of Eq. (11) was used with
N = 13 in order to provide a larger number of oscilla-
tor shells (up to 26 in practice) in the z direction, while
keeping the overall number of basis states relatively low.
With these large-basis calculations, we �nd that the re-
sults of Dubray et al. [14] are very well reproduced.
In Fig. 15, we compare the mass quadrupole moment
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Figure 13: (Color online) Scission line for 226Th obtained in
this work, and compared to the result of Dubray et al. [14].
The solid disks connected by a solid green line represent HFB
solutions just before scission in this work, and the solid disks
connected by a dashed red line represent solutions immedi-
ately after scission in this work. The thick solid black curve
is the scission line taken from [14].
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Figure 14: (Color online) Large-basis HFB calculations in
226Th along lines with �xed

〈
Q̂20

〉
performed to reproduce

the details of the scission line found in Dubray et al. [14]. A
dashed line connects the last point before scission, and should
be compared to the Dubray et al. result (solid line).

calculated for the fragments for the HFB solutions just
before scission (solid disks connected by solid lines in
Fig. 13) to the corresponding result in [14]. As in [14],
the Q20 values were calculated by integration over the
left- and right-fragment densities, truncated at the neck
position. The results of [14] are well reproduced by our
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Figure 15: (Color online) Comparison of �ssion-fragment
quadrupole moments as a function of fragment mass num-
ber between this work (solid black disks) and the results in
[14] (solid red triangles).
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Figure 16: (Color online) Same as Fig. 15, but for the �ssion-
fragment octupole moments.

calculations. Similarly, in Fig. 16, we show the octupole
moment of the fragments compared to the Dubray et al.
results. In this case as well, the agreement between the
two sets of calculations is good.

The agreement between one-center and two-center cal-
culations in Figs. (13)-(16) is reassuring, both as a bench-
mark for the HFB code used in this work, and as an as-
sessment of the applicability of the one-center basis near
scission. With these results in mind, we turn next to the
�ssion properties of 240Pu.
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Figure 17: (Color online) Scission line for 240Pu obtained in
this work. All calculations were done using the basis trun-
cation of Eq. (11). The solid green disks represent HFB
calculations producing a whole (non-scissioned) nuclear den-
sity. The empty red circles connected by a solid line represent
scissioned con�gurations.

B. 240Pu scission

For the 240Pu calculations, we have used the truncation
scheme of Eq. (11) with N = 13. The parameterization
in Eqs. (14) and (15) was adopted for the HO frequencies.
Fig. 17 illustrates the search for the hot-scission line

in 240Pu. Points along lines with �xed
〈
Q̂30

〉
or

〈
Q̂20

〉
increasing in steps of 1 b3/2 and 5 b near the scission line,
respectively, denote individual HFB calculations, each
using the previous one as a starting point. As in the
case of 226Th in Fig. 13, the nucleus tends to stretch to
much larger deformations in the symmetric limit. This
leads to fragments that are formed much further apart
in symmetric �ssion, and a corresponding drop in their
mutual Coulomb repulsion�and therefore their total ki-
netic energy�as observed experimentally [44]. As in the
case of 226Th, we also observe regions around Q20 =
550b/Q30 = 35 b3/2 and Q20 = 400 b/Q30 = 38 b3/2

where the scission line �bulges out�. In these regions,
for a given Q30 value, the nucleus may scission at more
than one value of Q20.
Fig. 18 compares the total HFB energy of the �ssioning

nucleus just before and just after scission. In general,
scission is accompanied by a marked drop in HFB energy.
That drop, however, is much more pronounced for �ssion
near the symmetric limit, where it can be as large as

∼ 50 MeV over the ∆
〈
Q̂20

〉
= 5b change in quadrupole

moment. Note that the fragment masses in Fig. 18 are
not the same before and after scission. This di�erence
is an indication of the drastic variations in the nuclear
density, and the redistribution of particles in the neck
between the two fragments at scission.
The number of particles in the neck just before and

after scission is shown in Fig. 19 as a function of the
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Figure 18: (Color online) HFB energy of the �ssioning nu-
cleus, plotted as a function of the heavy-fragment mass num-
ber, obtained from the HFB calculations just before (solid
green disks) and just after (empty red circles) scission in Fig.
17.
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Figure 19: (Color online) Number of particles in the neck
of the �ssioning nucleus, plotted as a function of the heavy-
fragment mass number, obtained from the HFB calculations
just before (solid green disks) and just after (empty red cir-
cles) scission in Fig. 17.

heavy-fragment mass. The variation in
〈
Q̂N

〉
is quite

large (typically by an order of magnitude, but near the
symmetric limit, by more than a factor of 1000).
As in [14], we extract the fragment properties for each

mass division from the HFB calculation just before scis-
sion. However, we go further than the calculation in [14]
by attempting to approach the scission con�guration even
more closely. We introduce an additional constraint on
QN to each point in the Q20−Q30 map of Fig. 17 just be-
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Figure 20: (Color online) Identi�cation of the last con�gura-
tion before scission for HFB calculations at �xed Q30= 10b3/2

and 55b3/2, as a function of the QN constraint. The circled
points on each curve were chosen as the last pre-scission con-
�guration, before the drop in HFB energy as a function of
decreasing QN .

fore the scission line, and search for the QN value mark-
ing a point just before a drop in EHFB occurs. Fig. 20
shows some typical choices for this point. In Fig. 21, the
charge and mass of each fragment is plotted, covering a
range from A = 93 to 147. We note that there is a nearly
linear relationship between the mass and charge of the
fragments, which can be �tted as

Z = 3.5349 + 0.36221 A

This result is consistent with the prediction of the
Unchanged-Charge Division (UCD) model [45], also
shown in Fig. 21 for comparison, which for 240Pu yields

Z =
94
240

A ≈ 0.3917 A

The moments of the fragments are shown in Figs. 22-
24. The overall shape of the quadrupole moment in Fig.
22 is similar to the one shown for 226Th in Fig. 15, with a
maximum at the symmetric limit, and a drop-o� on either

side. There is also a signi�cant dip in the
〈
Q̂20

〉
value

near the nearly-spherical 134Te fragment. The fragment
octupole moment, plotted in Fig. 23, also shows simi-
larities in shape as well as magnitude to the 226Th case
in Fig. 16 [46]. Finally, we also show the hexadecapole
moment of the fragments in Fig. 24. There as well, the

value of
〈
Q̂40

〉
reaches a maximum near the symmetric

limit, and drops o� on either side. In all cases, a line has
been drawn to guide the eye using a polynomial �t to
the points. The HFB calculations in Figs. 22-24 exhibit
a great deal of �uctuation about the smooth polynomial
�t. These �uctuations are due for the most part to the
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Figure 21: (Color online) Fission-fragment charge number
plotted as a function of mass number, obtained from the HFB
calculations immediately prior to scission in Fig. 17. The
UCD prediction (solid red line) is plotted for comparison.
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Figure 22: (Color online) Fission-fragment quadrupole mo-
ments, plotted as a function of fragment mass number, ob-
tained from the HFB calculations immediately prior to scis-
sion in Fig. 17. A line has been drawn through the HFB
results to guide the eye.

di�culty in identifying a scission con�guration based on
the criterion of sudden changes in global nuclear proper-
ties, such as the total energy. In a forthcoming paper [39],
we will embark on a more detailed study of the scission
con�gurations at the microscopic level, and extract the
excitation, kinetic, and interaction energies of the frag-
ments. The merits and di�culties of a scission criterion
based on the interaction energy between the fragments
will be discussed in detail.
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Figure 23: (Color online) Same as Fig. 22, but for the �ssion-
fragment octupole moments.
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Figure 24: (Color online) Same as Fig. 22, but for the �ssion-
fragment hexadecapole moments.

IV. CONCLUSION

We have developed the HFB code FRANCHBRIE for
microscopic �ssion studies using the �nite-range D1S ef-
fective interaction. The code allows for the multiple con-
straints needed to explore the nuclear densities relevant
to �ssion, and is based on matrix elements calculated in a
one-center deformed harmonic-oscillator basis. We have
provided a detailed derivation of the formalism required
for the adjustment of those multiple constraints.

We have applied the code to the calculation of scis-
sion con�gurations in the hot �ssion of 240Pu. These
calculations are relevant to studies of thermal neutron-
induced �ssion on a target of 239Pu. We have focused

on the technical aspects of using the HFB formalism for
�ssion studies. In particular, we have discussed some as-
pects of �ssion calculations within a one-center basis, and
the importance the choice of collective coordinates in the
HFB iterations for nearly-scissioned con�gurations. A
scission line in the quadrupole-octupole plane was ob-
tained and shows a tendency for the nucleus to reach
much larger elongations in the symmetric limit before
scission occurs. A similar feature was observed in the
scission line of 226Th by Dubray et al. [14] using two-
center HFB calculations, reproduced in this work with
a one-center calculation. The increased �malleability� of
the nucleus near the symmetric limit is re�ected in the
various moments (quadrupole, octupole, hexadecapole)
calculated for the �ssion fragments and presented here.

In a forthcoming publication, we will extract the exci-
tation and kinetic energies of the �ssion fragments. We
will introduce a microscopic criterion for the identi�ca-
tion of �ssion fragments, and calculate their interaction
energies, with special attention to the density tails dis-
cussed in this paper. Finally, the static calculations of
hot �ssion presented here are the �rst step in a fully
dynamical calculation of 240Pu �ssion. Further devel-
opments are planned to explore all �ssion modes, from
hot to cold, and to include the dynamical aspects of the
theory in the calculations.
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Appendix A: MULTIPLE CONSTRAINT
FORMALISM

1. E�ect of the variation of a single Lagrange
multiplier on the generalized density

In this appendix, we derive the formalism for solving
the HFB equation with multiple constraints. The deriva-
tion generalizes the discussion in [28] to the case of mul-
tiple constraints.

In the �rst section, we give the essential formulas used
in the adjustment of constraints. A second section il-
lustrates the formalism with the special case of a single
constraint, and the last section presents the general case
of multiple constraints. Starting from the HFB equa-
tion, Eq. (9), we write for a Hamiltonian with a single

constraint λF̂ introduced as is Eq. (16),

[H (R (λ) , λ) , R (λ)] = 0
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where 〈
λ

∣∣∣F̂ ∣∣∣ λ
〉
≡ f (λ)

=
1
2
TrF̂ +

1
2
TrFR (λ) (A1)

is the expectation value of F̂ in the corresponding HFB
solution |λ〉, with F given by Eq. (17). Consider a small
variation δλ of the Lagrange multiplier, leading to a new
HFB solution with

[H (R (λ + δλ) , λ + δλ) , R (λ + δλ)] = 0 (A2)

where 〈
λ + δλ

∣∣∣F̂ ∣∣∣ λ + δλ
〉
≡ f (λ + δλ)

=
1
2
TrF̂

+
1
2
TrFR (λ + δλ) (A3)

We will now derive an explicit relation between the gen-
eralized density

R (λ) ≡ (0)R

and its perturbed value, expanded to �rst order in δλ,

R (λ + δλ) ≡ (0)R + (1)R

Note that the idempotence condition in Eq. (5) implies
that the matrix (1)R has the form

(1)R̃ =
(

0 (1)R̃12

(1)R̃21 0

)
(A4)

in the quasiparticle representation that diagonalizes (0)R.
A straightforward linearization of Eq. (A2) about (0)R
gives the relation

(1) ~R = δλM−1 ~F (A5)

where M is the QRPA matrix, whose elements are given
by second-order derivatives of the energy with respect to
the generalized density matrix [28], and where we have
introduced the vector notation

~F =
(

F (1,2)

F (1,2)∗

)
(A6)

and similarly for (1) ~R. Next, from Eqs. (A1) and (A3),
we deduce

δf ≡ f (λ + δλ)− f (λ)

=
1
2

~F † · (1) ~R (A7)

Combining this result with Eq. (A5), we can express δλ
in the form

δλ =
2δf

~F † ·
(
M−1 ~F

) (A8)

Equations (A5) and (A8) are the basis for the iterative
procedure described in the next section that is used to
solve the HFB equation under constraint.
In order to obtain a computationally e�cient expres-

sion for the inverse QRPA matrix M−1 in Eq. (A8), we
adopt the so-called �cranking� approximation where the
residual interaction between quasiparticles is neglected
in the QRPA matrix. In this case, M−1 takes the block-
diagonal form

M−1 =

 [
(εµ + εν)−1

δµσδντ

]
[0]

[0]
[
(εµ + εν)−1

δµσδντ

] 
and therefore,

(1)R21
µν =

δλ

εµ + εν

∑
mn

(FmnVmµUnν

−F ∗
mnUmµVnν) (A9)

with a corresponding expression for δλ.

2. Adjustment of the HFB solution in the case of
one constraint

In this section, we examine in greater detail steps 7
and 8 in the description of the HFB algorithm listed in
section IID. In this case, the constrained HFB equation
is written

[H (R)− λF, R] = 0

with

f =
1
2
TrF̂ +

1
2
TrFR

where f is the expectation value of the constraint opera-
tor. The solution of the HFB equation then consists not
only in determining R, but also the Lagrange multiplier
λ that satis�es the constraint. To solve this problem, we
are led to an iterative procedure wherein the Lagrange
multiplier is adjusted at each iteration. Consider the
nth iteration, such that the generalized density matrix
obtained in the previous iteration is R(n−1) with a cor-
responding Lagrange multiplier λ(n−1). The diagonaliza-
tion of H

(
R(n−1)

)
− λ(n−1)F leads to a new generalized

density which we will denote R̄(n). At this stage, the con-
straint is no longer necessarily satis�ed and we calculate
the deviation from the desired value

δf (n) = f − f (n)

We correct the Lagrange multiplier using Eq. (A8),

λ(n) = λ(n−1) +
2δf (n)

~F † ·
(
M−1 ~F

)
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and the generalized density using Eq. (A5),

R(n) = R̄(n) + δλM−1 ~F

with

δλ = λ(n) − λ(n−1)

We de�ne the nth iteration with the self-consistent pair
of R(n) and λ(n). Note that the constraint is satis�ed at
each iteration. This iterative process generally converges,
i.e.

R(n) → R̄(n) → R

λ(n) → λ

f (n) → f

If the di�erence in constraint values is very large between
successive iterations (as may be the case in the �rst few
iterations), the convergence rate can be improved by cal-
culating the generalized density matrix at the nth itera-
tion according to

R(n) = (1− α)
(
R̄(n) + δλM−1 ~F

)
+ αR(n−1)

with the associated Lagrange multiplier

λ(n) = (1− α)
(
λ(n−1) + δλ

)
+ αλ(n−1)

where the weight α tends to zero as the solution con-
verges. With this prescription, the convergence of the
generalized density and Lagrange multiplier are slowed
down by the same amount. In other words, the desired
value f for the constraint is approached in a gradual man-
ner, so that at the nth iteration〈

λ(n)
∣∣∣F̂ ∣∣∣ λ(n)

〉
= f (n) = (1− α) f + αf (n−1)

3. Adjustment of the HFB solution in the case of
multiple constraints

The results in the previous section can be readily gen-
eralized to an arbitrary number N of constraints. In this
case, the HFB procedure minimizes the energy〈

{λ}

∣∣∣∣∣H −
N∑

i=1

λiF̂i

∣∣∣∣∣ {λ}
〉

subject to the set of constraints〈
{λ}

∣∣∣F̂i

∣∣∣ {λ}〉 = fi, i = 1, . . . , N

The generalized density matrix is now a function of N
Lagrange multipliers, R ({λ}). We write

R ({λ + δλ})−R ({λ}) ≡ (1)R

=
N∑

i=1

∂R

∂λi
δλi

=
N∑

i=1

(1)Ri (A10)

Clearly, (1)Ri is a variation where all the Lagrange mul-
tipliers are held �xed except for the one associated with
F̂i. Therefore, (1)Ri is given by Eq. (A5) with the sub-

stitutions δλ→ δλi and F̂ → F̂i. In the case of multiple
constraints, Eq. (A5) is therefore replaced by

(1) ~R =
N∑

i=1

δλiM
−1 ~Fi (A11)

Furthermore, using the generalization of Eq. (A7) to
multiple constraints,

δfi ≡
〈
{λ + δλ}

∣∣∣F̂i

∣∣∣ {λ + δλ}
〉
−

〈
{λ}

∣∣∣F̂i

∣∣∣ {λ}〉
=

1
2

~F †
i ·

(1) ~R

and taking into account Eq. (A11), we �nally obtain

δλ = T−1δf (A12)

where the N ×N matrix T is de�ned by

Tlm ≡ 1
2

~F †
l ·

(
M−1 ~Fm

)
(A13)

Note that this matrix introduces correlations between all
the constraints. We assume in our discussion that the in-
verse matrix T−1 exists, i.e., that the constraints are in-
dependent. Eqs. (A11) and (A12) then replace Eqs. (A5)
and (A8) in the adjustment method described above.

Appendix B: TRANSLATION IN A FINITE
HARMONIC OSCILLATOR BASIS

In this section, we give the explicit form for the ex-
pansion of a translated harmonic-oscillator function in a
harmonic-oscillator basis. We begin with the generating
function for the Cartesian harmonic-oscillator function
(Eq. (A.1) in [35]).

e−t2+2tx/b−x2/(2b2) =
√

b
√

π

∞∑
k=0

2k/2

√
k!

tkΦk (x; b)(B1)

Letting x→ x+∆x on both sides of Eq. (B1) after some
simpli�cation, the left-hand side (LHS) can be written as

LHS =
√

b
√

πe−∆x(x+∆x/2)/b2

×
∞∑

m=0

∞∑
n=0

2m+n/2 (∆x/b)m

m!
√

n!
Φn (x; b) tm+n

where we have used Eq. (B1) to express the LHS in terms
of harmonic-oscillator functions. Equating like powers of
the arbitrary variable t between the LHS and right-hand
side (RHS), we obtain

Φk (x + ∆x; b) = e−∆x(x+∆x/2)/b2

×
k∑

m=0

2m/2
√

k! (∆x/b)m

m!
√

(k −m)!

×Φk−m (x; b) (B2)
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This is still a �nite sum over harmonic-oscillator func-
tions, however an overall exponential factor depending
on x remains, and must be eliminated in order to ob-
tain the expansion of Φk (x + ∆x; b) on the harmonic-
oscillator basis. Thus, in general, we need to derive an
expansion for the expression

e2αx/b2Φi (x; b) (B3)

where α = −∆x/2 and i = k −m in our case. Starting
from the generating function in Eq. (B1), and multiply-
ing both sides by the exponential factor in Eq. (B3), the
LHS of Eq. (B1) becomes after some simpli�cation

LHS =
√

b
√

πeα2/b2
∞∑

l=0

2l/2

√
l!

e2αt/b
(
t +

α

b

)l

Φl (x; b)

Expanding in powers of the arbitrary variable t, this takes
the form

LHS =
√

b
√

πeα2/b2
∞∑

l=0

∞∑
p=0

l∑
q=0

×
(

l
q

)
2p+l/2

p!
√

l!

(α

b

)l+p−q

Φl (x; b) tp+q

Therefore, equating like powers of t between LHS and
RHS, we obtain

e2αx/b2Φk (x; b) = eα2/b2
∞∑

l=0

l∑
q=0

(
l
q

)
2(k+l)/2−q

√
k!

(k − q)!
√

l!

×
(α

b

)l+k−2q

Φl (x; b)

Using this result in Eq. (B2), we obtain

Φk (x + ∆x; b) = e−∆x2/(4b2)

×
∞∑

l=0

Cl

(
−∆x

2b

)
Φl (x; b) (B4)

where

Cl (ξ) = 2(k+l)/2

√
k!
l!

ξ(k+l)/2

×
k∑

m=0

l∑
q=0

(−1)m 2m−q

m! (k −m− q)!

(
l
q

)
ξ−2q

Note that the expansion of the translated harmonic-
oscillator function requires in principle and in�nite num-
ber of terms. In practice, these translations are per-
formed in a �nite-sized basis, and the truncation of the
sum in Eq. (B4) to those shells within the basis can lead
to the appearance of tails for translated nuclear densities
expanded in a �nite harmonic-oscillator basis, as shown
in Figs. 1 and 2.
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